ОПТИМИЗАЦИЯ

Современное хранение:

культура производства в машиностроении

Текст: Артем Кручинов

В России современное обрабатывающее предприятие на фоне мирового роста цен на материалы уже не может позволить себе обходить вопрос внедрения культуры производства на всех этапах выпуска продукции. Если театр начинается с вешалки, то бережное отношение к заготовкам - с порядка при их хранении.

При хранении заготовок на обычных стеллажах значительная часть площади уходит на технические проходы между рядами

В машиностроительной отрасли есть материалы, которые представляют реальную проблему при их складировании. Это, в первую очередь, относится к металлическим листам, пруткам, панелям и пластинам. Из-за их особенностей – небольшая толщина при больших габаритах (например, 1,5 мм при сторонах листа 1250 × 2500 мм по ГОСТ 19903-2015) и требованиях к сохранению качества поверхности – им необходимы специальные индивидуальные решения. Они должны обеспечивать порядок, оптимизацию пространства и быстрый доступ для выдачи в производство без ущерба для безопасности персонала при отсутствии ошибок, вызванных, например, пересортицей или человеческим фактором.

В статье мы рассмотрим современные решения, которые помогут более эффективно по сравнению с традиционными методами организовать систему хранения крупных заготовок, чаще всего используемых в металлообработке (Рис 1).

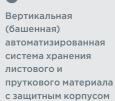
Вертикальная (башенная) автоматизированная система хранения листового и пруткового материала

Листовой металл, мраморные и прочие каменные плиты, деревянные и фанерные панели из-за своих размеров и веса требуют особых способов для их удобного хранения, учёта и выдачи. Например, размеры листов, даже если мы говорим только о стандартизованных, составляют до 6000 мм на 2000 мм с разными толщинами и могут быть из разных марок стали, поэтому вопрос свободных площадей для их хранения немаловажен. Также необходимо наличие погрузочно-разгрузочных систем желательно с максимально высокой безопасностью и эффективностью при работе с такими заготовками. Добавим к этому и необходимость хранения прутковых заготовок разных форм, размеров и разных сплавов.

Поэтому при разработке автоматической системы хранения листового металла, прутков, пластин и профилей должны быть учтены все потребности заказчика, которые можно сформулировать следующим образом:

- максимальная вместимость хранилища с особым упором на необходимость хранения материалов при минимальной занимаемой площади и с наибольшей плотностью хранения;
- унификация типа склада для хранения материалов, поступающих после промежуточной обработки, что обеспечит единую систему хранения, которая должна быть одновременно экономичной и гибкой для учета в любой момент времени.

Вертикальная (башенная) автоматизированная система отвечает всем перечисленным выше требованиям (РИС 2, 3).


Такая система предназначена для хранения листов, прутков, различных профилей и подобных заготовок с высокой плотностью благодаря минимальному расстоянию между полками (от 190 мм) и размещению «под потолок» (обычно до 10 м). Существуют модели с одной и двумя башнями, которые обслуживаются при помо-

Вертикальная (башенная) автоматизированная система хранения листового и пруткового материала без защитного корпуса

- 1 Дверь для технического обслуживания
- 2 Привод подъемного механизма
- 3 Привод экстрактора
- 4 Система обеспечения безопасности
- 5 Полки хранения
- 6 Направляющие для полки
- 7 Подъёмник
- 8 Выталкиватели листового материала

Основные части конструкции башенной автоматизированной системы хранения

Поворотная кран-балка для работы с заготовками на полке

щи подъемного механизма (рис **4**). Для металлических листов предусмотрена рама с выталкивателями для удобства снятия с полки.

Технические характеристики вертикальных автоматизированных систем можно оценить по стандартным моделям (11). При необходимости под потребности заказчика могут быть изготовлены и специальные версии систем хранения.

К другим отличительным особенностям систем можно отнести: небольшую площадь застройки под систему хранения, исключение человеческого фактора при выдаче запрашиваемой заготовки благодаря контролю со стороны системы управления складом (WMS-системы), облегчение труда персонала склада, увеличение эффективности за счёт автоматизации загрузки/выдачи материала, удобный доступ к полке. Работа и техническое обслуживание проходят в полной безопасности благодаря защитным ограждениям, фотоэлектрическим барьерам и встроенной системе безопасности.

В **1** представлены модели наиболее популярных автоматизированных башенных систем хранения. Возможно исполнение систем хранения с другими габаритами под конкретные помещения на территории производства, с требуемыми размерами полок и грузоподъемностью до 20 т на каждую с учётом необходимой высоты груза.

Для удобства загрузки/выгрузки заготовок система может быть оснащена поворотной кран-балкой (РИС **⑤**).

Стеллажная автоматизированная система хранения листа (AS/RSсистема)

Система представляет собой эволюционное развитие башенных систем хранения, когда несколько башен располагаются в ряд, а грузы обрабатываются краном-штабелёром, который перемещается вдоль по рельсовому

00

Технические характеристики вертикальных (башенных) автоматизированных систем производства «Ferretto Group» (Италия)

модель	MMS3000 MBS3000	MMS4000 MBS4000	MMHS3000 MBHS3000	MMHS4000 MBHS4000	мвмв6000
Тип хранимого груза	Пластины, листь	і, полосы			Прутки и про- фили
Максимальная высота системы, мм	5075	5475	7880	7880	9880
Количество башен хра- нения, шт.	1 (для моделей ММ) 2 (для моделей МВ)				2
Максимальное количе- ство уровней размеще- ния, шт.	20		32		25
Максимальный размер полки, мм	3048 × 1524	4064 × 1524	3048 × 1524	4064 × 1524	6260 × 720
Максимальная масса груза, кг	3 000				
Максимальная высота груза, мм	90				300
Шаг между уровнями размещения, мм	190	210			360

пути (Рис **6**). В зависимости от необходимой производительности и типа груза кран-штабелёр оснащен вилочным приспособлением для захвата и подъёма полки/палеты или цепным экстрактором (Рис **7**).

Как и в случае с башенной системой хранения, системы с краном-штабелером могут быть спроектированы под конкретные задачи заказчика в соответствии с его техническим заданием (РИС

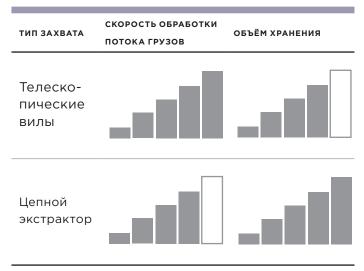
(В).

- 1 Мостовая рама
- 2 Верхняя балка
- 3 Экстрактор
- 4 Привод подъемного механизма
- 5 Шкаф управления
- 6 Привод продольного перемещения
- 7 Нижняя балка
 - 8 Лестница для обслуживания крана-штабелёра

12

Технические характеристики стеллажных автоматизированных систем производства «Ferretto Group» (Италия)

модель	SSF	SSD	
Максимальная высота, мм	10 290	10 680	
Минимальный шаг между уровнями хранения, мм	280 190		
Максимальный размер полки, мм	4064 × 1524		
Минимальный размер полки, мм	600 × 300		
Максимальная нагрузка на полку, кг	30005000		
Горизонтальная скорость, м/с	2,5		
Горизонтальное ускорение, м/с²	0,5		
Вертикальная скорость, м/с	0,5		
Вертикальное ускорение, м/с²	0,5		
Тип захвата	телескопиче- ские вилы	цепной экстрактор	
Расстояние между	фиксированное		
полками	или переменное		



В специальном исполнении стеллажная система может применяться для хранения рулонных материалов

Сравнение стеллажных систем в зависимости от типа захвата

Палетная автоматизированная система хранения материалов

Крупные и тяжелые заготовки на металлообрабатывающем производстве не ограничиваются только листовой и прутковой формой. На предприятиях, которые производят детали и узлы для автомобильного или железнодорожного транспорта, для крупной сельскохозяйственной техники, для дальнейшей обработки используются большие отливки или поковки. Для хранение таких заготовок подойдёт палетная автоматизированная система хранения, в которой для обслуживания ячеек применяют тележки – шаттлы, управляемые в автоматическом режиме WMS-системой (Рис 9). Шаттлы комплектуются индивидуальными аккумуляторными батареями, а специальные серии дают возможность работать при температуре до -30 °C, тем самым позволяя разместить основное хранилище в неотапливаемом помещении. В зависимости от частоты обращений к материальным ценностям рассчитывается требуемое количество шаттлов для безостановочной работы с учётом времени для подзарядки шаттлов.

Конструкция данной системы позволяет организовать хранение в несколько рядов по принципам: «последний вошёл – первым вышел» и «первым вошёл – первым вышел» (РИС 10, 11).

Благодаря WMS-системе таким образом можно хранить не только исходные заготовки, но и частично обработанные, а также готовые детали и узлы без риска возникновения путаницы. Возможно специальное исполнение в зависимости от формы заготовки (РИС 3).

О внедрении автоматизированных систем в производственную цепочку

Как мы уже говорили, представленные типы систем могут хранить не только заготовки, но и полуфабрикаты и полностью готовые детали, а при необходимости и крупногабаритную технологическую оснастку. Однако гибкость их использования этим не ограничивается. Системы могут

1	Датчик обнаружения палеты/полки
2	Антенна
3	Сенсорная кромка, клавиша экстренной остановки, датчик слежения движения
4	Система управления
5	Полиуретановые колёса
6	Литиевая аккумуляторная батарея (24 В)
7	Рамная конструкция
8	Рёбра жёсткости
9	Направляющие

Основные элементы палетной автоматизированной системы хранения материалов

T4

Технические характеристики тележек-шаттлов производства «Ferretto Group» (Италия)

Модель	Flexy 800	Flexy 1000	Flexy 1200	
Размеры, мм	970 × 1086	970 × 1286	970 × 1486	
Размеры груза, мм	800 × 1200	1000 × 1200	1200 × 1200	
Максимальная масса груза, кг	1500			
Рабочие температуры окружающей	+5 / +40 °C (стандартная версия)			
среды	-30 / +5 °C (для низких температур)			
Время подъёма, с		3		
Скорость без груза, м/с		1,1		
Скорость при полной загрузке, м/с		0,65		
Время работы батареи, ч		8		
Время зарядки батареи, ч		3		

Палетная автоматизированная система с глубиной в несколько рядов в версии с краном-штабелёром.

Интеграция складского комплекса на участке листообработки непосредственно в производственную цепочку

16

Объединение складской системы с установками лазерной резки

быть внедрены непосредственно в производственные линии, когда после выдачи заготовка попадает сразу на обрабатывающий станок (Рис 12). Например, возможна интеграция с листообрабатывающим оборудованием, где в качестве связующего звена между хранилищем и установкой лазерной резки выступает робот-манипулятор, задача которого переложить заготовку на подающий стол станка, а затем другой робот переместит ее на листогибочный пресс (Рис 13).

В этом случае автоматизированная система хранения становится не просто местом складирования и учёта заготовок, полуфабрикатов и готовой продукции, но и диспетчерско-логистическим центром, объединяющим обрабатывающие станки, что дает возможность автоматизировать не только складское хозяйство, но и всё производство, повысив его эффективность. Автоматизированные складские системы – это не только порядок при хранении, но и чётко отслеживаемое производство. Они относятся к числу логистических решений, которые наилучшим образом отвечают потребностям компаний, занятых в металлообработке в условиях серийного производства.

ООО «Остек-АртТул» выполняет расчёт и проектирование автоматизированных систем хранения любой сложности. Мы рассмотрели три основные категории автоматических решений для хранения крупногабаритных заготовок и готовой продукции:

- Вертикальная (башенная)
 автоматизированная система хранения
 листового и пруткового материала.
- Стеллажная автоматизированная система хранения листа (AS/RS-система).
- Палетная автоматизированная система хранения материалов.

Эти системы отличаются друг от друга по вместимости, типу хранения, количеству мест приёма-выдачи и методам объединения с производством.

Если перед вашим производством стоят вопросы автоматизации хранения и внутрипроизводственной логистики, наша компания предложит решение и поможет в переходе на новый уровень производства.